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SUMMARY 
This paper is devoted to a comparison of various iterative solvers for the Stokes problem, based on the 
preconditioned Uzawa approach. In the first section the basic equations and general results of gradient-like 
methods are recalled. Then a new class of preconditioners, whose optimality will be shown, is introduced. In 
the last section numerical experiments and comparisons with multigrid methods prove the quality of these 
schemes, whose discretization is detailed. 
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INTRODUCTION 

The need to numerically solve the generalized Stokes problem (GSP) appears in incompressible 
fluid dynamics and in structural mechanics problems such as plasticity, beam and shell studies, 
etc.’ Underlying any formulation of the Navier-Stokes equations, the GSP can be seen as a vital 
substep in the resolution of non-linear simulations, including non-Newtonian flows, combustion 
phenomena and turbulence modelling.2 Moreover, such formulations can easily be 
transposed to weakly compressible media, permitting also a refined modelization of tides and 
storm surges through St Venant’s (shallow water) e q ~ a t i 0 n s . j ~ ~  To solve them, a wide diversity of 
numerical methods can be found in the literature.6 Nevertheless, as they are often developed for 
very special situations, few schemes allow the treatment of industrial problems, whose main 
characteristics are: 

(i) 3D flows in very complicated geometries (see Figure 1 for example) 
(ii) basic equations coupled with complementary modelling (thermal buoyancy effects, turbu- 

(iii) various boundary conditions such as constrained velocities or stresses, symmetry and 

(iv) robustness and simplicity of the algorithms (with no parameter to tune) 
(v) efficiency and accuracy (a good mass balance is fundamental), with reasonable CPU costs 

Following Peyret and Taylor,* it seems that only the finite element (or finite volume) approach 
formulated in primitive variables (i.e. velocity and pressure) allows us to satisfy these various 
requirements. 

Within that scope, this paper is devoted to a comparison of various iterative solvers based on 

lence, etc.) 

periodicity, wall treatment assuming logarithmic  profile^,^ etc. 

and memory requirements. 
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Figure 1. Example of industrial application. (a) Sketch of the cold plenum of a fast breeder reactor. (b) Finite element 
mesh of the cold plenum: 12936 P1-P2 tetrahedra, 20108 velocity nodes and 2896 pressure nodes 
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the preconditioned Uzawa approach. In the first section the basic equations and general results of 
gradient-like methods are recalled. Then a comparative analysis of classical improvements leads 
us to introduce a new class of preconditioners whose optimality will be shown. In the last section 
numerical experiments and comparisons with multigrid methods prove the quality of these 
schemes, whose discretization is detailed. Finally a three-dimensional turbulent simulation of the 
flow in a fast breeder reactor is briefly discussed and is shown to confirm the industrial adequacy 
of these schemes. 

A GENERALIZED STOKES PROBLEM AND CLASSICAL GRADIENT METHODS 

A generalized Stokes problem 

Reynolds numbers. They can be written in a dimensionless form as 
The Stokes equations describe the motion of an incompressible viscous flow at very low 

v.v=o,  (la) 
aV 1 v2v -t VP = s. _ _ _  
at Re 

Here v and P denote respectively the velocity and the kinematic pressure field defined on a 
domain Q(nc R3) bounded by the boundary r, s describes the internal force per unit volume and 
Re denotes the Reynolds number, defined as 

R e = p U L / p ,  (2) 

where p is the density, L a reference length, U a reference velocity and p the dynamic viscosity. 
The above equations are based on the Eulerian approach to the Navier-Stokes equations, 

neglecting non-linear terms; equations (la) and (1 b) express the mass balance and momentum 
balance respectively. The classical boundary value problem associated with this model is defined 
by: 

(i) an initial distribution of velocity on SZ 
(ii) the value of v on r at each time satisfying a zero-flux condition resulting from in- 

compressibility: 

j; - n dQ = 0. (3) 

Then we are able to introduce the discretization with respect to time. Choosing a time step D T  
and assuming that velocity v" and pressure P" at time T"=nDT are known, many approaches 
have been studied to compute v"+l  and Pn+l at time T+DT. Most of them lead to the same kind 
of elliptic problem-the so-called generalized Stokes problem or GSP. Indeed implicit schemes 
are generally chosen to avoid such a time step limitation as a parabolic stability criterion. 
Therefore time derivatives are discretized as 

av/at=ClV"+1-f(v",v"-1,. . .) (4) 

( 5 )  

(6 1 

and space derivatives as 

v 2 v = e v 2 v ~ + 1 - g ( v ~ ,  v - 1 ,  . . .), 
VP=B'VP"+'-h(P",P"-', . . . ), 
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where f, g and h denote some simple linear functions taking into account the previous values of v 
and P. 

For instance, the simplest first-order scheme (- O(DT)) is the backward Euler implicit scheme 

v . v n + l -  - 0, (74  

_ _ v n +  1 - 1 v Z v n +  1 + vpn+ 1 = ~ 1 
1 Tv" + s", 

D T  Re 

equivalent to 

a= 1 fDT, 8=8'= 1, f (v) = av, g=h=O. (8) 

= 2 fD T, 0=8'=' 2 9  (9) 

Second-order schemes (- O(DT 2)) are easily built by using a classical Crank-Nicholson approxi- 
mation, i.e. 

as in C a h o ~ e t . ~  
Moreover, the same kind of GSP (with different values for a, 8) also appears as a fundamental 

substep in a wide variety of Navier-Stokes solvers using fractional step methods,", l 1  alternating 
direction methods' 2* or least-squares conjugate gradient solutions. 14* l S  All these approaches 
can be summarized in a general GSP framework as follows: 

Find (v, P )  such that 
V . v = O  over Q, 
av  - VVV + V P  = f over n, 
with v=O o n r ,  

s given on Q, 
(a, V)€R+ x R,.. 

At this stage, a few points have to be emphasized: 

(i) The main difficulties in solving this set of equations result from the presence of the linear 
constraint applied to v and from the lack of boundary conditions for the pressure. 

(ii) The classical steady Stokes problem is related to a=O. 
(iii) For the sake of simplicity we choose, as usual, v equal to zero on r. However, non- 

homogeneous problems can also be written in the previous form by subtracting in 
equation (10) a velocity field satisfying 

V-v ,=O over Q 
vo=vr on r. 

The existence of vo requires that V y  and r are sufficiently smooth. Thus the deviation between v 
and the exact unknown solution satisfies a homogeneous GSP with the modified right-hand side 

f '  = f - avo + VVZV,. (12) 
To conclude this presentation, we recall existence, uniqueness and regularity properties for the 

solution of the GSP. The main ideas underlying the proofs can be found in Cahouet and 
Hauguel,I6 but one can refer to Girault and Raviart" or Temam13 for a complete description of 
functional spaces and proofs of theorems. 
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Theorem 1. Let R be a bounded and connected subset of RN (N=2,3) with a Lipschitz 
continuous boundary r and let f be a given function of H - ' ( Q N ;  then there exists one and only 
one pair of functions (v, P )  E H,#2)N x Lg(i2) satisfying equation (10). If the constrained velocity 
on r belongs to H''2(r), the result still holds with v in H'(f2). 

This fundamental result requires a few comments about the pressure field which appears to 

(i) The subscript '0' recalls that the pressure is defined up to a constant and indefiniteness is 
avoided by choosing its mean value equal to zero. This constraint should be kept in mind 
and carefully discretized as explained in the Appendix; 

(ii) One can be disappointed by the poor a priori regularity of the pressure. The origin of these 
restrictions, which can prohibit the use of some solvers (assuming P in H'(R) for example), 
is clearly circumscribed by the following theorem (part (1) is proved in Temam13 and 
part (2) in Grisvard"). 

belong to Li(R). 

Theorem 2. (1) In addition to the hypothesis of Theorem 1, suppose that r is of class C2 and f is 
given in L'(R) for 1 < Y < 2. Then the GSP has a unique solution (v, P )  in W ', N(R) x W ' v N ( i 2 )  
x Li(R) and there exists a constant Cr independent of (v, P )  and f such that 

I l ~ I l 2 , r  + II PI1 1.r < Crl l f l l0 .r .  (13) 

(2) When r is only Lipschitz continuous, this conclusion is still valid provided N = 2 and R is 
convex. 

As a conclusion (and in a less mathematical form), pressure regularity is related to: 

(i) 

(ii) 

(iii) 

The regularity off, which is always satisfied in practice except for some thermal hydraulics 
studies where the Boussinesq approximation generates a non-smooth right-hand side (see 
the examples in Goussebaile and Jacomy19). 
The regularity of v y  if non-homogeneous; Figure 2 illustrates two classical cases where Vy 
does not belong to the correct functional space. 
The regularity of the boundary r: as for harmonic or biharmonic equations, the presence 
of a corner coupled or not with point (i) and (ii) may introduce local singularities. A fine 
description of these can be found in Bernardi and Raugel" for the 2D cases. We just recall 
that they look like 

S(r, O ) = f  (p<O) (14) 

(4 Inflow jet (b) Lid driven cavity 

Figure 2. Irregular boundary conditions introducing singularities in the pressure field. (a) Inflow jet. (b) Lid driven 
cavity 
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in polar co-ordinates, with p varying with respect to the value of the corner angle w, and 
that they appear only if w is strictly greater than n/2 (the singularity of the driven cavity 
test being related to point (ii) as in Serre21). For the 3D case some preliminary results have 
been recently presented by Grisvard.22 

This basic information must be kept in mind for any FE approach to the GSP in order to 
choose an optimal mesh refined near singularities, an optimal solver compatible with pressure 
regularity and finally an optimal predictor for iterative schemes taking into account the irregular 
part of the field. 

Uzawa ulgorithm 

As explained before, many schemes are available to solve the GSP,6 but the simplest approach 
is undoubtedly the iterative Uzawa algorithm, derived from an equivalent saddle-point approach 
of (l), defined as: 

Find u E such that 

This algorithm, which is in fact a simple gradient method applied to the minimization of the 
dual f u n c t i ~ n a l , ~ ~  is described as follows: 

Step 0. Initialize P", n=O (e.g. P=O). 
Step 1. Compute the velocity associated to P" by equation (lb), i.e. 

uv" - VVZV" = - V P "  + s, (16) 
with vn=vr on r. 

Step 2. Compute the divergence of v". 
Step 3. If the residual divergence vanishes, then (v", P") is the required solution; else define a 

new pressure field P"+l  as 

and return to Step 1. 
p " + ' , p " - p v . v "  (17) 

Convergence is proved for any p sufficiently small. This approach clearly exhibits the strong 
relationship which couples the divergence-free constraint and the pressure which appears as a 
Lagrange multiplier. More precisely, the two fields are related by the useful Uzawa operator U ,  
defined as follows: 

u,: L;(Q)+L;(Q), 

p-+ U,(P), 

uv - vv2v  = - VP.  

The Uzawa operator is a self-adjoint isomorphism of Li(R) and the associated bilinear form is 
symmetric and positive definite. These properties explain why pressure is commonly used to 

such that U,(P)= V.v(P),  where v(P) satisfies 

(18) 
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compute the unique divergence-free solution and, moreover, allow us to improve the previous 
gradient approach by the use of a conjugate gradient method. However, for simplicity we will 
always consider the pure gradient algorithm, the CG variant being just sketched and fully 
described in the Appendix. The Lagrangian formulation and proofs of convergence can be found 
in Fortin and G l o w i n ~ k i ~ ~  (or in a less mathematical form in Cahouet and Hauguel16). 

We must pay attention to this scheme because it satisfies most of the industrial requirements 
recalled in the Introduction: 

(i) The extreme simplicity of the algorithm is obvious from the iterative process described 

(ii) The robustness is related to the minimization process. 
(iii) The mass conservation can be satisfied as precisely as necessary since the pressure belongs 

(iv) The same algorithm is able to deal with 2D or 3 D  modelling without any complication. 
(v) Finally each iteration is rather cheap: only Step 1 requires a linear system solution and the 

matrix involved is sparse, rather well conditioned, of low-order (because each component 
can be computed independently) and can be factorized and preconditioned once and for 
all. 

So this algorithm appears to be adequate, but unfortunately the speed of convergence is very 
slow, i.e. the L2-norm of the residual divergence decays very slowly (see numerical results given 
later) and too many iterations are required to obtain sufficient accuracy. 

above. 

to L2(Q). 

Classical improvements 

To cope with this major drawback, three interesting variants can be investigated: augmented 
Lagrangian, multigrid and preconditioning methods. 

Considering the Uzawa scheme as a Lagrangian method (cf. H e ~ t e n e s ~ ~  and Powellz6), Fortin 
and Glowinskit4 have suggested reinforcing the weight of the constraint in the functional 5?l by 
adding the square of the L2-norm of the divergence. They defined an augmented Lagrangian -!Z2 
as 

Hence the Uzawa scheme is again available on the dual functional and leads to the same kind of 
iterative algorithm as the previous one, except that Step 1 has to be replaced by: 

g 2 ( v ,  P)=-!Z,(v, P)+(r/2)(V*v, V-v),  r E R , + .  (19) 

Step 1. Estimate the velocity from P" by the modified equation 

tlv"-vV2v"+rV(V*vn)= -VP"+s on Q, 

with v" = vr on r. 
The greater r is the faster is the convergence, but the bigger is the condition number associated 

with the matrix of the linear system resulting from space discretization. Therefore the optimal 
value of r has to be found numerically. In most cases this algorithm is better than the previous 
Uzawa scheme and precise solutions are obtained in less than ten iterations. Meanwhile, the 
components of the velocity are now coupled by the addition of rV(V-v) and the size of the linear 
system is consequently increased (i.e. multiplied by two (resp. three) for 2D (resp. 3 D )  problems). 
So this elegant approach seems to be restricted to 2D problems. 

The same limitation is relevant, at least up to now, to multigrid methods. Multiple variants 
have been considered by V e r f ~ r t h ~ ~ , ~ '  and N i g ~ n ~ ~  and very fast convergence rates (see 
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numerical results) have been obtained on 2D regular meshes, but extensions to unstructured 
meshes and 3D problems are still under development. 

In order to overcome these difficulties, we have been developing at EDF since 1981 a third 
complementary approach based on the use of preconditioners which will be discussed in the next 
section. 

PRECONDITIONED UZAWA SCHEMES 

Preconditioning method 

iterative solver for the equivalent pressure formulation: 
Preconditioning appears naturally if the standard Uzawa algorithm is interpreted as an 

i.e. 

with 

I Find P E L;(Cl) such that 

U , ( P )  = V . A -  'f, 

I Find P such that 

V * A-  'V P = V . A-'f, 

A-1  .H-1 . (Ln).-,H;(R)", 

v -+A - (v), 

A-  '(v) +I- vv2)- l ~ ,  

v = O  o n r .  

By definition, the computed solution ( P ,  v(P)) satisfies equations (la) and (lb). The equivalence 
to the initial problem is derived from the Uzawa operator properties (as recalled in the previous 
section). 

So it is natural to speed up the iterative process by introducing a symmetrical positive definite 
operator C, close to U ,  (in a sense to be defined), C being used as a preconditioner for the descent 
step as follows: 

(17') Step 3'. p"+ 1 = p" - &- 'V . v". 

As only Step 3 has been modified, all the good properties of the method (and especially the 
uncoupling of velocity components) are preserved, provided that the computation of C- is not 
too expensive. 

As will be clearly demonstrated by the numerical results, the rate of convergence of the 
preconditioned scheme is very sensitive to the choice of C. At least five categories of method allow 
us to build different variants for C. 

(i) The most classical approach is based on an algebraic approximation of the matrix 
associated with the discretized formulation, as for example incomplete Choleski decompo- 
sition. Unfortunately none of these methods2' can be applied to the Uzawa operator, 
which is never built in practice in order to save CPU time and reduce memory require- 
ments. 
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(ii) In a second more heuristic approach, the initial operator is degenerated depending on ,the 
flow characteristics. In the case of high Reynolds number a method introduced by Labadie 
and Lasbleiz3' will be detailed hereafter. 

(iii) This approach can be generalized by introducing the Fourier analysis of the Uzawa 
operator. Thus we can study the behaviour of different variants and propose a precondi- 
tioner C, close to U,  in a spectral meaning."j 

(iv) This kind of preconditioner can also be deduced from a multi-solver approach3' similar to 
the multigrid method, which allows an understanding of the quality of the numerical 
results. 

(v) Finally the last approach, which is still under d e ~ e l o p r n e n t , ~ . ~ ~  is based on a quasi- 
Newton method and takes into account the updating and optimization of previous 
preconditioners with time evolution. 

Lahadie's approach 

Let us consider first the approach developed by Labadie. For high Reynolds number it seems 
natural to neglect the viscous terms in the core of the flow; this is equivalent to assimilating the 
velocity contribution in equation (lb) in the unsteady part: 

A = a1 - vV2 - al. (24) 

v,(P)~v(aI)-~vP-(l/a)v'P. (25) 

Then the Uzawa operator is simplified as 

The lack of boundary conditions can be overcome by assuming the existence of a boundary layer 
which allows us to use 

aP/& = 0 (26 1 
near the solid walls. So a first preconditioner C, is fully defined by its inverse C; 

c; 1: Lg(R)+H'(n),  
4-P = c; ,(q), 

such that 

- V 2 P = q  onR,  

aPlan=O on r, dR = 0. 

Step 3 of the Uzawa algorithm becomes formally 

p" + 1 = p" - p( - V2) - '(V . v") . (1 7") 

This preconditioner is especially attractive, because it satisfies all the mathematical properties 
required (correct functional spaces, same kernel as the U ,  operator, symmetrical positive definite 
properties of the associated bilinear form) and furthermore the first iteration includes the classical 
Chorin-Ternam". scheme, which obviously provides a good predictor to start the iterative 
process. 

For numerical applications the C, operator, defined only on pressure unknowns, is discretized 
and factorized once and for all. It appears from numerical experiments that this preconditioner 
coupled with the conjugate gradient variant considerably increases the efficiency of the Uzawa 
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scheme at a very reasonable cost. More precisely, the performances are related to the mesh 
Reynolds number 

if a= ~ 

(DX/DT ) DX aDXZ ( = R e  
U L  

Re, = ~ 

V 

which takes into account the influence of the time step and the mesh refinement characterized by 
a reference length DX. The bigger Re,  is (i.e. the smaller the time step or the coarser the grid), the 
faster is the algorithm. 

On the other hand, the above approach has some drawbacks: 

(i) 

(ii) 

(iii) 

The boundary conditions on P" remain unchanged during iterations, since we have 

on r, apo -- - . . .  - apn apn- 1 -=--.- 
an an an 

which can clearly be inaccurate if the first guess P o  is wrong. 
The scheme generally behaves poorly at low Reynolds mesh numbers, which corroborates 
the underlying assumptions. 
This approach assumes implicitly that P belongs to H'(R). From this point of view the 
preconditioner acts as a smoother for the residual divergence, which is only supposed to 
belong to H - '(Q) because of duality, and thus can be used even for Re,  = 0 if all the given 
data are sufficiently smooth (see Theorem 2), as for the steady Couette flow for example. 

These limitations on pressure regularity and mesh Reynolds number have motivated us to 
pursue our studies of preconditioning. 

Present approach 

Fourier analysis. In order to provide a quantitative analysis of the behaviour of the solvers 
with respect to the regularity of pressure, we have achieved a spectral comparison of each solver 
described herein. To avoid a complete recall of the Fourier analysis formalism (see Lions and 
ma gene^^^ for details), we only give a simplified calculation based on the basic Uzawa formu- 
lation and then sum up equivalent results for the other solvers. 

Let us consider the nth iteration of a Uzawa scheme applied to a periodic boundary GSP and 
assume that the residual divergence is equal to 

(30) 
(the complete spectrum being obtained by superposition owing to the linearity of the operators). 
Then we easily deduce the pressure and velocity increments, varying with respect to the value of 
the descent parameter p as 

(31) 

v * v n  = e-i":x, (0, x) E ~n x [w", i2 = - 1 

6p* = - p v .  yn = - pe-iw-x. 
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So the residual divergence becomes after a single Uzawa iteration 

V.v"+'=V.V"+v.&."= 

The iterative process converges if 

(35) 

and the optimal value for p is obviously 

&;t = v + ./I1 0 II z .  (37) 

Thus it appears that the optimal value is strongly related to the shape (i.e. the spectral 
decomposition) of the pressure field. The same analysis applied to the Labadie solver leads to 

(38) p:p = tl + v 11011 z. 

In the same manner the dependence of the optimal descent parameter with respect to o for the 
augmented Lagrangian method is given by 

pt:= v+r+a/lIo(12. (39) 
These dependencies are summed up in Figure 3. From these curves we can estimate the 

sensibility of pop, with respect to the frequency. These graphs prove that the classical Uzawa 

__--_- LRBRDIE SCHEME . . . . . . . . . . . . 
--- RUG. LRG. METHOD 

UZRWR SCHEME 

- OPTIt!RL SOLVER 

Figure 3. Comparison of different schemes 
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scheme is able to filter all the high frequencies ( 1 1 0 1 1  % a/v)  in a single iteration if p is chosen equal 
to v ,  but the convergence for low frequencies will be very slow (if the spectrum is not monochro- 
matic!) because the value of p will not be optimal and the spectral radius will be close to one. On 
the other hand, the Labadie scheme behaves well for long waves (with p = a) but is not able to 
capture short wiggles, and this is in perfect agreement with numerical tests. Finally the analysis of 
the augmented Lagrangian curve clearly exhibits that the penalization of the constraint (in an L2- 
norm) allows us to translate the spectrum proportionally to r and thus increases the efficiency of 
the basic scheme for the short waves. Moreover, equation (39) justifies the empirical choice p = r 
introduced by Fortin and Gl~winski . '~  

To conclude this comparison, let us notice that in practical cases 1 1 0 1 1  is bounded by mmin and 
o,,,., taking into account the smallest finite element diameter and the size of the domain. As the 
initial Fourier transform of divergence covers all this bandwidth, the choice of p is strongly 
related to the minimization process (i.e. to the choice of the scalar product), but most of them 
favour long waves. So the Uzawa scheme is more handicapped than the Labadie scheme, which is 
able to suppress long-wave components during the first iterations and seems more powerful, at 
least at the beginning. 

These analytical results lead us to consider a new class of preconditioners defined as a linear 
combination of the identity operator (from the Uzawa scheme) and the inverse of the delta 
operator (from the Labadie approach): 

c ; 1 = A I - 1 - p ( v 2 ) - 1 ,  ( A , P ) € [ W X  R. (40) 

The required property of C;' as a preconditioner (i.e. to be a self-adjoint isomorphism onto 
Lg(R)) implies obviously 

(A, p)€ rw; x R+. (41) 

Then our simplified Fourier analysis provides the optimal descent parameter with respect to the 
frequency as 

and an optimal choice for the GSP appears to be 

A = v ,  c L = 4  (43) 
because the descent parameter becomes fully independent of the frequency and the scheme is able 
to span all the spectrum with the same efficiency as a multigrid scheme. Mathematically this 
choice ensures the equality of the symbols of the U, and C, operators, at least in the case of 
periodic boundary conditions, which appear for example in turbomachinery studies. Moreover, 
one could consider optimizing the (A, p) parameters for other kinds of boundary conditions, but the 
numerical results show that this estimation is sufficiently precise for Dirichlet BCs (in any case 
these values are still optimal far from the boundary). 

This new preconditioner, whose inverse is defined as 

c;' = v1-1- a(V2)-', (44) 
includes Labadie's ideas for strongly unsteady configurations and degenerates in a simple manner 
for steady or quasi-steady cases (a  - 0). For intermediate situations it specifies the optimal ratio 
between the two components. Before detailing some numerical experiments, let us justify and 
explain these improvements by a complementary analysis based on a multi-solver approach. 
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Multi-soher approach. The main idea underlying this section is that the efficiency of solvers is 
strongly related to pressure regularity. More precisely, while Chorin-Temam,' 2* ' 
Glowin~ki-Pironneau~~ and Labadie3' methods are well suited for regular and smooth solutions, 
only the (CG) Uzawa algorithm (which does not require PEH'(R)) is able to solve stiff problems. 

This numerical intuition leads us to develop concurrently a multi-solver approach coupling the 
Uzawa scheme with a smooth solver; the first one being dedicated to compute sharp gradients 
and the second one to obtain quickly the smooth part of the field which represents 90% of the 
whole domain in most of the cases. Initially our idea was to transpose the multigrid concept (see 
H a c k b ~ s c h ~ ~  for basis) to a multi-operator concept as follows: 

Refined grid oLZ(R)  e Uzawa scheme, 

Chorin-Temam scheme, 

Labadie scheme. 
Coarse g r i d o H  '(Qb Glowinski-Pironneau scheme, 

We hope to reach in this way the efficiency of the multigrid approach (i.e. a rate of convergence 
independent of the spectral decomposition of P z 8 )  without generating embedded grids, something 
that has not been feasible up to now for complicated 3D domains. 

For the sake of simplicity we first consider the simplest pair, Uzawa-Chorin. If we denote by 
(P", v") the solution obtained at iteration n from a CG Uzawa algorithm, the deviation (6P", 8 ~ " )  
from the exact solution is given by 

ci8v" - VV * 6v" = - V6P" over R, 

V - 6 v n =  -V .v"  over R, 

W = O  on I-. 
(45) 

Then formally 

(47) = - a V  * v" + VVZ(V * v"). 

As for the Chorin-Temam approach, Neumann homogeneous boundary conditions are chosen 
for the Laplacian operator. Hence the iterative process on pressure becomes 

and we recognize the previous preconditioner C, obtained initially by the Fourier analysis. As 
before, the main approximation is related to the boundary conditions. However, this multi-solver 
approach introduces a new point of view which allows us to conceive an improvement for C,, not 
in the choice of (A, p) but rather in the choice of the boundary conditions. This can easily be done 
by replacing the crude Chorin-Temam scheme by a few iterations of a Glowinski-Pironneau 
solver as the smoother. 

The next section is devoted to the discretization and validation of these methods on 2D and 3D 
numerical experiments. 
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DISCRETE CASE AND NUMERICAL RESULTS 

Discrete formulation of the GSP 

mating HA(!2) and L2(!2). Then the discrete form is the following: 
We discretize the weak formulation of the GSP by choosing two subsets vh and k f h  approxi- 

where (. , .) is the L2-inner product and a(. , .) the bilinear form defined by 
n 

a(V, 'b)= (W*JI+vVq.V\lr)dQ v(Cp, $)E vh X vh. (50) 
Jn 

Taking into account the boundary conditions, the matrix form of the weak formulation can be 
written as 

where U and P denote the vectors of nodal velocity and nodal pressure values respectively and 
where A and B are the matrix blocks 

A=(ai,j) with ai,j=a(qi, q i ) ,  

B=(bi,j) with bi , j= -(ni, V T q i ) .  
(52) 

(53) 
Of course the finite element approximations of v and P have to satisfy some compatibility 

condition in order to ensure the existence and unicity of the solution (U,P)T of the linear 
system (51). 

For all the following numerical results we have chosen the Hood-Taylor3' approach, i.e. P1-P2 
six-node triangles for 2D or ten-node tetrahedra for 3D, with continuous pressure, for which the 
space approximation is second-order accurate. Note that any other choice of finite elements, such 
as Q l-Qz quadrilaterals, or bricks, or P,-iso?, triangles6 or tetrahedra, is also compatible with 
our approach. 

Discrete Uzawa algorithm 

The discretized Uzawa pressure formulation derived from the elimination of the velocity in 
equation (49a) using equation (49b) (cf. equation (21)) appears to be equivalent to the linear 
system on pressure nodal values, 

[BA-'BT] [P]=[BA-lF], (54) 
which is solved iteratively as follows: 

Step 0. Initialize P,. 
Step 1. estimate the velocity, component by component, by solving 

AU,= -BTP,+F. (55 )  
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Step 2. Estimate the residual of the pressure system, which is in fact the divergence of U,: 

R, = BA- IF - BA- 'B=P, = BU,. (56) 

(57) 

Step 3. Compute the new descent direction 

Pn + 1 =Pn- pRn. 

By analogy with the continuous case, a good discretization of the preconditioner C has to be 
close to the discretized Uzawa operator in the following sense: 

C - ' [BA - ' BT] - I. (58) 
Then if we assume, as Labadie did, that the Reynolds number is very high, the inertial term 
predominates over the viscous term in the matrix A and we have 

A -&M; ', (59) 

where M, denotes the P2 mass matrix. 
Hence we obtain a discrete approximation of C as 

C,=BM;'BT, (60) 
which is nothing but the so-called compatible Laplacian discretization often advocated by finite 
difference users.38 Let us notice that a direct discretization of C leads to the classical Laplacian 
discretization with homogeneous Neumann boundary conditions: 

D = ( d i , j )  with d i , j=  -(Vzi, Vzj). (61) 
Both discretizations of the pressure Laplacian will be used and compared hereafter. Let us 

point out that the same choice arises for our new preconditioner, which involves moreover the PI 
pressure mass matrix M,. 

Numerical results 

Convergence rate. In order to compare in an objective way the performances of the different 
schemes presented in the previous section, we have chosen (according to Verfurth2*) to describe 
the decay of the L2-norm of the divergence versus the number of iterations. All these curves can be 
characterized by the rate of convergence x, defined as 

which is strongly related to the condition number % of the matrix C-'BA-'BT, as shown in the 
classical upper-bound estimation3' 

derived for the conjugate gradient approach. In semi-logarithmic axes as shown in Figures 4-7, x 
is equal to the inverse of the logarithm of the slope: the lower x is, the better is the scheme. 
However, comparisons must be done carefully because x depends in most cases on the regularity 
of the pressure field and on the mesh Reynolds number defined earlier. 

2D comparatiue analysis of preconditioners. For the following 2D results, P2-P, finite elements 
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and classical discretization D of the Laplacian have been used. The next four numerical tests are 
intended to compare the performances and the sensitivity of the different schemes with respect to 
the pressure regularity, the mesh Reynolds number and the mesh refinement. When possible, x 
estimates are compared with Verfurth’s28 multigrid results. 

A smooth test. The first numerical test deals with a smooth analytical solution which belongs to 
the space Vh x M,. It considers a 2D unit square domain with homogeneous boundary conditions 
on velocity and a constant volume force f =( - 1 , l ) .  Thus the exact solution is 

v = o ,  P= -x+y+constant. (64) 

The following results are obtained with DX = 1/10, where DX denotes the smallest distance 
between two pressure nodes. The rate of convergence of the various schemes is presented in 
Table I. Let us emphasize that x has to be less than one in order for the scheme to converge and a 
value for x of about 0.3 means that the residual divergence is divided by ten every two iterations. 
Then one can appreciate the speed-up resulting from preconditioning techniques which appear to 
be even more powerful than multigrid schemes in that case. 

Influence ofsingularities. After this very smooth test, we can consider a less regular compu- 
tation including a slit in the domain and a stiff boundary condition on the velocity. Numerical 
results are summarized on Table 11; they compare the evolution of divergence for the different 
schemes in the steady and unsteady cases. 

In both cases the new approach is still better, with an excellent convergence rate. In fact for all 
our 2D tests the value of x obtained with the present scheme is quite constant (0-20 GxG0.31  for 

Table I. Comparison of the rate of convergence for the smooth test 

Classical 
Uzawa Labadie Present Verfurth 

Case scheme approach approach multigrid 

0 . 6 < ~ < 1  0.4GxG0.8 0.34 05<x<0.9 Steady 
(Re,=O) 

Unsteady 
(Re,= 10) 

Table 11. Comparison of the convergence rate test of the 
cavity with a slit 

Classical 
Uzawa Labadie Present 

Case scheme approach approach 

< 0.7 0.56 0.46 Steady 
(Re, = 0) 

x < 0.8 0.46 0.31 Unsteady 
(Re,= 10) 
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unsteady cases, 0.25GxG0.46 for steady cases) and of the same order of magnitude as with 
multigrid methods. 

Infuence of the mesh Reynolds number. To study the simultaneous influence of time and space 
discretization through the mesh Reynolds number, the classical lid driven cavity test has been 
chosen with ‘smooth’ boundary conditions (i.e. v=(x2 -x, 0) on the moving wall). 

The mesh Reynolds number takes the following values: 0, 0.1, 10 and 100 with (DX fixed at 
1/10). The decay of the divergence has been drawn in Figure 4 and it confirms that: 

(i) Labadie’s approach is well suited for strongly unsteady cases (x-0.35) but has a poor rate 

(ii) Our new scheme is independent of Re, and leads to a very good solver (x = 0.3) even on this 
of convergence when Re, 2 50 (x 2 0.8). 
difficult test problem where the continuous solution does not belong to L2(sZ). 

lnfiuence of the mesh size. It is well known that the efficiency of most of the solvers is reduced 
when the mesh is refined (because of the deterioration of the condition number associated with 
the matrix of the system to be solved), except for multigrid schemes, which are able to deal with 
high frequencie~.’~.~~ Taking into account analogies between the multigrid and multi-solver 
approaches described earlier, we presume that our new scheme has the same properties. 

Thus we have performed a study of the influence of the mesh size on the test case of flow behind 
a circular cylinder39 by using successive mesh refinements (Table 111). 

? I  r , I 1 t 
0.0 5.0 10.0 15.0 20.0 25.0 

NUMBER OF ITERATIONS 

o------o C. G. Prec. by New Alg. - Rem = 10 
L----* C. G. Prec. by Labadle Alg. - Rem = 10 
+--.-.----+ C. G. Prec. by New Alg. - Rem = .l 
x--+ C. G. Prec. by Labadie Alg. - Rem = .1 
-4 C. G. Prec. by New Alg. - R e m  = 0 
v----+ C. G. Prec. by Labadie Alg. - Rern = 0 
.----a C. G. Prec. by New Alg. - Rem = 100 
Y----+ C. G. Prec by Labadie Alg. - Rem = 100 

Figure 4. Influence of the Reynolds mesh number 
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Table 111. Description of the meshes used 

Number Number of Number of 
of velocity pressure 

Mesh elements nodes nodes 
~ ~ ~ 

Coarse 470 1020 275 

Reference 1128 2380 626 

Intermediate 1458 3028 784 

Refined 3168 6502 1666 

Two parameters are varying here: the mesh Reynolds number and the total number of nodes. 
The results presented in Figure 5 confirm that our new preconditioner is not affected (x is still 
about 0.30), while the Laplacian efficiency decreases as Re,  decreases. 

Comparison of the discretizations of the pressure Laplacian. As explained before, another 
discretization of the Laplacian, involving B and M; ', is available; it seems more fruitful because 

81 

I ,  

0.0 ;. 0 1h.O 15.0 zi.0 2t.O 
NUMBER OF ITERATIONS - C.G.Precby NEW. A l g . - K z  ldesh 

C. G. Prec by New A&. - Inter. Mesh 
--a C. G. Prec. by Labadie Alg. - Inter. LIeah 
-+ C. G. Prec by New. Alg. - Ret%d LIeah 

C. G. Prec. by Labadle a. - R e f d  Mesh 
C G. Prec. by New Alg. - Reference Mesh *----* C. G. Prec. by Labadie a. - Reference Mesh 

Figure 5. Influence of space discretization; cylinder test 

&----* C. G. Prec. by Labadle a. - Mesh 
+ ......... + 

p----+ 
.----I 
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it takes into account the velocity approximation and includes the exact pressure boundary 
conditions. But it requires the computation of the inverse of Mv, which is a full matrix which 
cannot be stored for an industrial 3D case. Nevertheless it is still possible for small 2D problems, 
and comparisons have been done. 

As an example, Figure 6 compares these two variants of Labadie's preconditioner, for various 
Reynolds mesh numbers (ranging from 0 to lOO), for the lid driven cavity test. As expected, the 
compatible approximation is better, and especially when Re, vanishes. For 3D problems research 
is still under way for a good approximation of M; Some preliminary results have been obtained 
using the inverse of the diagonal coefficients as the lumped P ,  mass matrix is not invertible. 

3 0  comparative analysis of preconditioners with respect to the mesh refinement. All the 3D 
results presented have been obtained with P,-P, ten-node tetrahedra with continuous pressure. 
As explained above, we have combined inside our new preconditioner the pressure mass matrix 
and either the classical discretization D of the Laplacian or the matrix B (diag M,)-'BT. 

As for the 2D case, a study of the sensitivity of the solvers with respect to the size of the mesh 
has been performed for the 3D lid driven cavity test with a constant velocity imposed on the 
upper wall, i.e. including some pressure singularities near the corners. Three regular meshes have 
been built, dividing by two and three the size of the initial mesh on each boundary (Table IV). 

;l 5.0 10.0 15.0 20.0 25.0 
0.0 

NUMBER OF ITERATIONS 

C. C. Prec. by Clas. Disc. - Rem = 10 
C. C. Prec. by Comp. Disc. - Rem = 10 
C. G. Prec. by C b .  Disc. - Rem = .1 
C. G. Prec. by Comp. Disc. - Rem = .1 
C. G. Prec. by Clas. Disc. - Rem = 0 
C. C. Prec. by Comp. Disc. - Rem = 0 
C. G. Prec. by CLaS. Disc. - Rem = 100 
C. G. Prec. by Comp. Disc. - R e m  = 100 

Comp. Disc. = Compatible Discretiz$ion 
Clas. Dlsc. = Classical Dlscretmation 

Figure 6. Influence of preconditioner discretization; smooth driven cavity test 
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Table IV. Mesh characteristics 
~ _ _ _ _ _ ~  

Number of Number of Percentage of Number of 
Number of velocity pressure constrained degrees of 

Mesh elements nodes nodes nodes freedom 

Coarse 
11 x 11 x 11 750 1331 216 45% 2412 

6000 9261 Intermediate 
21 x 21 x 21 1331 26% 21890 

20250 2979 1 Refined 
31 x 31 x 31 4096 18% 77382 

Table V. Convergence rates for the 3D unsteady lid driven cavity (clas. disc., classical discretization of 
the Laplacian; comp. disc., approximation of the compatible discretization) 

Labadie Labadie Present Present 
Without prec. prec. prec. prec. 

Mesh prec. clas. disc. comp. disc. clas. disc. comp. disc. 

Coarse 0.67 < x < 0.95 0.47 < x < 0.75 014 0.3 < x < 0.49 0.14 

Intermediate 0.77 < x < 1 0.54 < x < 0.71 0.15 0.3 < x G0.5 0.15 

Refined 098 0.52 < x < 0.7 1 0.14 0.3 < x G0.5 014 

Table Vf. Convergence rates for the 3D steady lid driven cavity 

Labadie Labadie 
Without prec. prec. Present 

Mesh prec. clasc. disc. comp. disc. prec. 

Coarse 0 . 8 2 < ~ < 1  0 - 8 2 < ~ < 1  0-50 0.58 

Intermediate 089 < x < 0.94 0.89 0.70 0.56 

0.78 0.57 0 . 8 6 < ~ < 1  0.92 Refined 

On each mesh, two mesh Reynolds numbers have been compared: a value of 0 for the steady 
problem and a value of 10 for the unsteady flow. These parameters have been chosen because they 
characterize the most delicate situations, the differences in efficiency vanishing when the mesh 
Reynolds number is greater than 100. For these computations an example of the divergence decay 
is given in Figure 7 and convergence rates are described in Tables V and VI. 
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- 
2 ’ 9-  
Z ?  
L 
0 

r 
K 9- 
0,r 
N 2 

NUMBER OF ITERRTIONS - 
L----+ 
+ ......... + C. G. Prec. Labadle Prec. 
--+ C. G. withmyany Prec 
+--- 

Figure 7(a). Steady 3 D  lid driven cavity (31 x 31 x 31) 

C. G. Prec. by New Prec with Clas. Disc. 
C. G. Prec. by Comp..Disc. 

C. G. Prec by New Prec with Comp. Disc. 

~--4 C. G. Prec. by New Prec with Clas. Disc. 
L----* C. G. Prec. by Comp..Disc. 
+.......-+ C. G. Prec. Labadie Prec. 
x--+ c. G. with27any Prec 
-.+ C. G. Prec. by New Prec with Comp. Disc. 

Figure 7(b). Unsteady 3 D  lid driven cavity (31 x 31 x 31) 
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A detailed analysis of the different curves and tables suggests the following remarks: 

(i) In all cases the basic Uzawa scheme is prohibited. 
(ii) For the unsteady equations the shape of the different curves is independent of DX, which 

clearly demonstrates that Re, is an intrinsic parameter. 
(iii) As expected for the steady case, the use of the Laplacian operator is not adapted and the 

rate of convergence increases quickly as the mesh is refined; nevertheless, the compatible 
approximation is always better, especially when the percentage of constrained nodes is 
significant. 

(iv) On the other hand, although it is not always more efficient, the new preconditioner with 
the classical discretization of the Laplacian is more reliable, with a constant rate of 
convergence of about 0.5 for any mesh Reynolds number. 

CPU time comparison for the 3 0  lid driven cavity test. An objective comparison of the various 
solvers must take into account the respective CPU costs, the memory requirements being 
identical. In Tables VII and VIII we summarize the CPU time required for an iteration in each 
solver in the steady and unsteady cases; these results have been obtained using a CRAY XMP 216 
computer without multitasking. 

Taking into account the convergence rate associated with each algorithm, these tables clearly 
show that for a given accuracy: 

(i) Labadie’s preconditioner and the new one (with compatible discretization of the 
Laplacian) are the cheapest in the unsteady configuration. 

(ii) When the Reynolds number is decreasing, our new scheme with a classical discretization 
has to be preferred. 

(iii) In the steady configuration these results have to be moderated by a complementary 
analysis of the matrix assembly cost, which prohibits the use of the compatible discretiz- 
ation. 

An industrial application. For EDF purposes we have to deal with complicated geometries 
such as the cold plenum of a liquid metal fast breeder reactor (LMFBR) described in Figure 1. A 
refined finite element mesh of this domain has required about 20000 velocity nodes (i.e. about lo5 
degrees of freedom for a turbulent simulation using a k--E model). Figure 8 illustrates the decay of 
the divergence for the various schemes; it validates the previous analysis (the value of x is indeed 
about 0.5) and confirms the adequacy of our solvers for this kind of problem. 

Table VII. Unsteady computation: CPU time in seconds for one iteration 

Labadie Labadie Present Present 
Without prec. prec. prec. prec. 

Mesh prec. clas. disc. comp. disc. clas. disc. comp. disc. 

Coarse 0075 0-08 0.1 0.085 0.1 1 

Intermediate 0.7 0.77 1.05 0.9 1.15 

Refined 2.5 2.8 4.0 3.5 4.5 



FAST 3-D FINITE ELEMENT SOLVERS 89 1 

Table VIII. Steady computation: CPU time in seconds for one iteration 

Labadie Labadie 
Without prec. prec. Present 

Mesh prec. clasc. disc. comp. disc. prec. 

Coarse 0.13 0.14 0.15 0.135 

Intermediate 2.1 2.6 2.5 2.2 

Refined 9 13.5 13 9.5 

NUMBER OF ITERATIONS - C G. Prec by New Prec with Clas. Disc. 
~ - - - - d  C G. Prec. by Comp. Disc. 
+.........+ C. G. Prec. Labadie Prec 
K--+ c. G. witmyany Prec 
+.+ C. G. Prec. by New Prec with Cotup. Disc. 

Figure 8. Reduction of the divergence versus the number of iterations for a 3D industrial problem 

CONCLUSIONS 

We have discussed in this paper some new approaches updating the classical Uzawa methods for 
solving Stokes equations. These advanced researches have converged on the realization of 
industrial tools: CEFALO code based on shallow water equations for environmental hydraulics 
studies3 and N3S code for Navier-Stokes equations. In both cases these algorithms are compat- 
ible with refined turbulence modelling and with other kinds of boundary conditions as detailed in 
Goussebaile and Jacomy,lg all these methods satisfying our constraints and permitting an 
improvement of computation efficiency. 

Finally further developments are still under way for taking into account the time variations of 



892 J. CAHOUET AND J.-P. CHABARD 

diffusion matrices (as in the turbulent case) in the preconditioners through a quasi-Newton 
approach.33 
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APPENDIX. DISCRETIZED UZAWA ALGORITHM: COMPUTATION 
ORGANIZATION 

Choice of the descent parameter 

equation. The main iterative process can be written as 
As explained earlier, Uzawa’s algorithm is a gradient method working on the pressure 

P,+ = P, - p i ,  = P, - p ( d P ,  - S )  

where s$ = BA -lBT and S = B K ’ F  (with the notation of the numerical results section). 
The descent parameter p can be chosen positive and small enough or, better, computed in order 

to minimize at each iteration the residual r,+ in the gradient direction. The optimal value for p is 
explicitly known and depends on the choice of the scalar product generally associated with the 
operator <di. The usual choices are the following: 

( I n  9 I n )  

( d r n ,  In)’ 
Steepest descent ( i  = - 1): p = ~ 

Implemented algorithm 

As described in Fortin and Gl~winski , ’~ a preconditioned conjugate gradient version of the 
Uzawa algorithm is used in our codes. In the sequel the computation organization is detailed; C 
denotes the preconditioner and W the conjugate direction of descent. Let us distinguish the first 
iteration, which looks like a simple gradient iteration. 

Initialize Po,  

First iteration 
Step I. Compute Uo solving A Uo = F - BTPo. 
Step 2. Compute the residual R,=BUo.  
Step 3. Compute Go solving CGo=Ro.  
Step 4. Set Wo=Go. 
Step 5 .  Compute Z ,  solving AZo=BTWO. 
Step 6. Compute po = R;Go/GiBZo. 
Step 7. Compute PI =Po - po Wo . 
At this stage the solution of two systems for the velocities is required: one for the right-hand- 

side contribution (Step 1) and one for the descent parameter (Step 5). For the next iterations one 
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of these solutions can be avoided by taking into account the relation 

AU,+ = F + B ~ P , +  = F + sT(p, - P,R,)= F +  B ~ P , - P , B ~ R ,  , 
AU, + = AU, - p ,  BTR, . 

So we have 

Then it follows: 

P,, U,, R ,  are known. 

Iteration n + 1 

Step 8.  Compute G, solving CG,=R,.  
Step 9. Compute An = RTG,/RT- G, - 1. 

Step 10. Compute W, = G, + 1, W, - . 
Step 11. Compute 2, solving AZ, = BT W,. 
Step 12. Compute p n =  RiG,/GiBZ,.  
Step 13. Compute P,+ 1, U,+ 1, R, + : 

Pn+ 1 =Pn- P .  Wn 9 un+ 1 = un+ 1 -pnZ,, Rn+ 1 =R,-p,BZ,.  
Go to Step 8 until llRn+ll[ < E .  

Some points have to be emphasized 

(a) The pressure matrix d = B A - ' B T  is never explicitly built during the iterative process. 
(b) If the new preconditioner is used, the number of iterations is small enough to avoid some 

periodic simple gradient iterations related to truncation and round-off errors. 
(c) For the velocity system we take advantage of the natural uncoupling of the velocity 

components and, in order to save CPU time and memory requirements, we solve three 
smaller systems, one on each velocity component. These three matrices are identical when 
Dirichlet boundary conditions are used but they can differ if other kinds of boundary 
conditions are required. 

(d) The velocity systems are solved by a conjugate gradient method using an incomplete 
Choleski decomposition (ICCG method). 

(e) If the new preconditioner is used, two linear systems have to be solved: one for the 
Laplacian, the other for the mass matrix. But the size of the preconditioning systems 
(number of pressure nodes) is very small compared with the size of the velocity systems. 
They are solved using a direct solver and are not time-consuming. 

(f)  As we invert with a direct solver the Laplacian with homogeneous Neumann boundary 
conditions, we have to take care of its kernel. In our codes a Dirichlet boundary condition is 
applied on the pressure just for the solution of this system, and the matrix becomes positive 
definite and symmetrical. Therefore it is necessary to modify the residual in order to obtain 
a zero mean value field before going on with the mass matrix solution. 
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